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Abstract. We consider a Susceptible-Infective-Recovered (SIR) model, where the mechanism for the re-
newal of susceptibles is demographic, on a ring with next nearest neighbour interactions, and a family of
correlated pair approximations (CPA), parametrized by a measure of the relative contributions of loops
and open triplets of the sites involved in the infection process. We have found that the phase diagram of the
CPA, at fixed coordination number, changes qualitatively as the relative weight of the loops increases, from
the phase diagram of the uncorrelated pair approximation to phase diagrams typical of one-dimensional
systems. In addition, we have performed computer simulations of the same model and shown that while
the CPA with a constant correlation parameter cannot describe the global behaviour of the model, a rea-
sonable description of the endemic equilibria as well as of the phase diagram may be obtained by allowing
the parameter to depend on the demographic rate.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 87.23.Ge Dynamics of social
systems – 05.70.Ln Nonequilibrium and irreversible thermodynamics

1 Introduction

Stochastic Susceptible-Infective-Recovered (SIR) epi-
demic models on lattices and networks can be mapped
on to percolation problems and are well understood [1–3].
To describe disease spread and persistence in a commu-
nity, the model must be extended to include a mecha-
nism for renewal of susceptibles, either births or immunity
waning.

Models with immunity waning, Susceptible-Infective-
Recovered-Susceptible (SIRS), are based on the following
transitions:

S
β−−−→
In

I
δ−−−→R

µ−−−→S, (1)

meaning that any susceptible individual S can be infected
by an infected neighbour In at the infection rate β, any
infected individual I becomes recovered R at the recovery
rate δ, and any recovered individual R becomes suscepti-
ble S at the immunity loss rate µ. Following customary
habits, we shall choose time units for which δ = 1.

The SIRS model interpolates between two well known
models, the contact process (also known as Susceptible-
Infective-Susceptible or SIS) and the SIR model, in the
limits µ → ∞ and µ → 0, respectively, and much is
known about its behaviour on regular lattices, both from
the point of view of rigorous results [4–6] and of assessing

a e-mail: benoit@cii.fc.ul.pt

the performance of mean field and pair approximations
against stochastic simulations [7].

In particular, it is known [6] that on hypercubic lat-
tices of arbitrary dimension the phase diagram of (1) has
two critical values, βc(∞) < βc(0), which are the critical
rates of the two limit problems that is the contact process
and SIR, respectively. For β < βc(∞) there is disease ex-
tinction for every µ, while for βc(0) < β there is disease
persistence for every µ. For βc(∞) < β < βc(0) disease
persistence occurs only for µ above a certain threshold.
The region of disease persistence for every µ is ‘miss-
ing’ in dimension d = 1, because in this case βc(0) is
infinite.

In [7] the uncorrelated pair approximation (UPA, see
Sect. 2) was applied to the SIRS model (1) on linear and
square lattices, and the phase diagrams computed from
the corresponding equations of evolution were compared
with the mean field phase diagram and with the results
of simulations. It was shown that, by contrast with the
mean field approximation, the UPA phase diagram agrees
qualitatively with the simulations and the exact results
both in d = 1 and in d = 2.

Since the UPA does not take into account the lattice
dimensionality explicitly, it predicts identical phase dia-
grams on lattices with the same coordination number k,
namely on linear (d = 1) and square (d = 2) lattices, when
next nearest neighbours (k = 4) are considered. However,
in one dimension the critical infection rate βc(0) = ∞,
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and the critical line has an asymptote at µ = 0, while
in two dimensions the critical line crosses the µ = 0 axis
at a finite value of βc, which is the result of the UPA for
k = 4.

The question is then whether generalized pair approx-
imations can account for the dependence on dimension-
ality and, in particular, whether they can describe phase
diagrams with different qualitative behaviours at fixed co-
ordination numbers.

We have addressed this question, and more generally
the problem of constructing suitable pair approximations
(Sect. 2), in the context of a modification of model (1),
where the mechanism of renewal of susceptibles is demog-
raphy, rather than immunity waning. This is the natural
scenario in the epidemiology of diseases that confer perma-
nent immunity, such as childhood infectious diseases [8,9].
For this model infection obeys the same rules as in (1), im-
munity is permanent and all individuals, whatever their
state, are submitted to birth and death events at a rate µ.
The stochastic process, which describes the dynamics of
this system, is governed by the transitions

S
β−−−→
In

I
δ−−−→R, (2a)

{S, I, R} µ−−−→S. (2b)

In the limit µ = 0, both models (1) and (2) coincide with
SIR model. In the opposite limit the dynamics of the
two models are drastically different. While, in the limit
µ = ∞, SIRS coincides with the contact model [7], in the
same limit the dynamics of (2) is trivial: it is driven by
demography, that keeps the entire population susceptible
for any βc, and thus βc(∞) = ∞. We are interested in the
regime, where µ is smaller than the recovery rate, which is
meaningful for the study of acute disease spread. Although
in this regime the dynamics is dominated by the infection
and recovery processes which are identical in both models,
the behaviour of (2) appears to be different, in a subtle
way, from that of (1) (Sect. 2).

We have considered the demographic SIR model (2)
on a linear lattice with periodic boundary conditions
(ring) and next nearest neighbour interactions, k = 4. We
constructed a family of correlated pair approximations
(CPA), parametrized by θ, a measure of the relative con-
tributions of loops and open triplets of connected sites
involved in the disease spread (Sect. 3). For θ = 0 the
approximation reduces to the standard UPA (Sect. 2).
The phase diagrams of the CPA show that as θ increases
from 0 to θ∗ (see Sect. 3) the CPA interpolates between
the k = 4 UPA critical behaviour and the typical one-
dimensional phase behaviour, with βc(0) = ∞. Finally,
we have simulated the demographic SIR model (2) on a
ring, with k = 4. The results of the simulations indicate
that while the CPA with a constant value of θ cannot
describe the global phase diagram of (2), a reasonable
description of endemic equilibria as well as of the phase
diagram is obtained when θ is allowed to depend on the
demographic rate µ (Sect. 3). This illustrates that in ad-
dition to describe the dimensional crossover for lattices

with coordination number k = 4, the CPA can be made
semi-quantitative providing an alternative to the stochas-
tic simulations of individual based models. We conclude
in Section 4 with a brief discussion of the results.

2 Mean field and uncorrelated pair
approximations

In this section we consider the time evolution of the
demographic SIR model on regular lattices and review
the mean-field and (standard) uncorrelated pair approx-
imations, setting the notation and the stage for the
development of the more sophisticated correlated pair
approximations.

In the demographic SIR model on networks, sites rep-
resent individuals and bonds social links. The dynam-
ics is governed by the stochastic process (2). Denoting
by Pt(A) the probability for an individual to be in state A
(at time t), Pt(AB) the probability for a lattice bond
to connect an individual in state A to an individual in
state B, the time evolution of the singleton probabili-
ties Pt(A) can be described by the set of first order differ-
ential equations [8,9]:

dPt(S)
dt

= +µ
[
Pt(I) + Pt(R)

] − β
∑

n

Pt(SIn), (3a)

dPt(I)
dt

= +β
∑

n

Pt(SIn) − (µ + δ) Pt(I), (3b)

dPt(R)
dt

= +δ Pt(I) − µ Pt(R), (3c)

where the summations run over the connected neighbours.
Clearly the set of equations (3) is not closed since it in-
volves pair probabilities without describing their time evo-
lution. This follows from the stochastic process (2) where
infection (2a) proceeds via SI contact pairs.

As a matter of fact, the time evolution of the q-tuple
probabilities is described by a set of first order differential
equations expressing their time derivatives as linear com-
binations of q-tuple and (q+1)-tuple probabilities, subject
to a normalization condition. In order to proceed, the set
of equations must be closed, that is the (q+1)-tuple prob-
abilities must be written in terms of q-tuple probabilities.
The ‘art’ is to use closures that capture key physical fea-
tures of the system and are still manageable by symbolic
or numerical-symbolic computation. The results of a par-
ticular closure, or approximation, may then be checked
against rigorous results and/or stochastic simulations.

For most closures the (q + 1)-tuple probabilities are
rational functions of the q-tuple probabilities, appropri-
ately normalized, and thus the constrained set of first
order differential equations may be replaced by an un-
constrained set where the time derivatives of independent
q-tuple probabilities are expressed as rational functions
of these q-tuple probabilities. Although the resulting sets
of equations are easily integrable by classical numerical
methods and admit polynomial systems as steady state
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Fig. 1. Endemic infective probability versus infection rate at (a) high demographic rate, and at (b) huge demographic rate:
the endemic infective probability is plotted from simulations (open circles), the MFA (long dashed lines), the UPA (dashed
dotted lines) and the correlated model with best-fit closed form parameters (solid lines). The fitting procedure is based on
perpendicular offsets and on the assumption that the closed form parameter θ depends only on the demographic rate µ. Closed
form parameters θ for (a) and (b) respectively: 0.50, 0.70.

equations, their analysis remains cumbersome even at low
order q.

The simplest closure is the mean field approximation
(MFA), where the pairs (2-tuples) are assumed to be
formed by uncorrelated singletons (1-tuples):

∑

n

Pt(SIn) ≈ k Pt(S)Pt(I). (4)

For the demographic SIR model the endemic equilibrium
(steady state) is computed easily. The mean-field endemic
infective probabilities are plotted in Figure 1 as a function
of the infection rate, at two values of µ. For any value of µ,
the MFA predicts two different steady states: at infection
rates β smaller than the critical infection rate βc there
is disease extinction, while at infection rates β greater
than the critical infection rate βc there is disease persis-
tence, i.e. infected (and recovered) individuals coexist with
susceptibles. The two regimes are separated by the mean-
field endemic threshold that is plotted in Figure 2 (dashed
line).

We anticipate that the results of the MFA will be accu-
rate when the demographic process of (2) dominates over
the infectious one since in this regime pairs are continually
broken and thus the behaviour of each individual is essen-
tially independent on that of the other ones. The infection
process governed by Susceptible-Infective contact pairs,
dominates in the opposite regime (µ � 1), relevant in the
epidemiological context. The appropriate mean field the-
ory is then the uncorrelated pair approximation (UPA).

The UPA is for pairs what the MFA is for singletons.
In the UPA triplets (3-tuples) are assumed to be formed
by uncorrelated pairs:

∑

n

Pt(ASIn) ≈ (k − 1)
Pt(SA)Pt(SI)

Pt(S)
. (5)

The UPA is expected to outperform the MFA but, in
general, its solution is not known in closed form. For the
demographic SIR model the calculation of the phase dia-
gram and the stability analysis is still tractable by sym-
bolic computation. For lattices with coordination number
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Fig. 2. Phase diagram for the UPA: the no-coexistence phase
and the coexistence phase are separated by the critical curve
from simulations (open circles), the MFA (long dashed line),
and the UPA (thick solid line). Within the coexistence phase,
at very low demographic rates µ, the UPA predicts an oscilla-
tory phase as shown in the inset.

k = 4, the phase diagram is plotted in Figure 2. It is clear
that the UPA is quantitatively superior to the MFA when
compared with the results of simulations (open circles).
Both the MF and the UP approximations of the k = 4
demographic SIR model predict a finite critical infection
rate at µ = 0, while the simulations indicate that βc will
diverge as µ tends to 0.

However, the SIRS and the demographic SIR models
are different at low (but finite) demographic rates µ. In
the demographic SIR model the mechanism for the re-
newal of susceptibles is totally random by contrast to the
mechanism of the SIRS model. In our model susceptibles
are born anywhere on the lattice while in the SIRS model
only previously infected sites loose immunity.

We note that the randomizing effect of the demo-
graphic SIR mechanism for the renewal of susceptibles is
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reminiscent of the randomizing effect of shortcuts in small-
world networks of the Watts and Strogatz type [10,11]
where correlations are destroyed and an effective mixing
of the population is achieved, with (drastic) consequences
on the phase diagram.

Finally, it is worth noticing that the UPA also predicts
the existence of an oscillatory phase within the survival
or coexistence phase (i.e., to the right of βc(0)), for small
values of µ (Fig. 2). The same is true for the UPA of
process (1) on the square lattice. This behaviour will be
difficult to identify in stochastic simulations, since it may
be blurred by large fluctuations and stochastic extinctions.

3 Correlated pair approximations

In order to construct more realistic pair approximations,
we have investigated closure procedures inspired by the
geometrical structure of the lattice.

Within this perspective and as far as social triplets
are concerned, the ring of degree k = 4 and the trian-
gular lattice (k = 6) are propitious networks since their
nearest-neighbour triplets split into two distinct classes:
‘chain-like’ (open) and ‘loop-like’ (closed) triplets. A very
naive idea is to take into account the two classes of triplets
and to use the probability θ and 1 − θ of finding respec-
tively a ‘loop-like’ triplet and a ‘chain-like’ triplet as a
parameter to be fitted to simulation results. Thus triplets
are assumed to be formed either of uncorrelated (chained)
pairs or of correlated (looped) pairs [12]:
∑

n

Pt(ASIn) ≈
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(k − 1)
[(

1 − θ
) Pt(SA)Pt(SI)

Pt(S) + θ Pt(AI)Pt(SA)Pt(SI)
Pt(A)Pt(S)Pt(I)

]

if A ∈ {S, R},
(k − 1)Pt(SI) − ∑

n

[
Pt(SSIn)+Pt(RSIn)

]

if A = I.

(6)

The demographic SIR version of the CPA (6) is
amenable by cumbersome numerical-symbolic computa-
tion although some interesting results may be obtained
by symbolic computation. The phase diagrams are shown
in Figure 3. We find that, as θ increases from 0 to θ∗ ≈
0.38071, keeping k = 4 fixed, the CPA phase diagrams
interpolate between the UPA behaviour and typical one-
dimensional phase diagrams with βc(0) = ∞. At θ∗ the
critical infection rate βc tends asymptotically to infinity as
the demographic rate µ vanishes. Inspection of Figure 3
also shows that the closed form parameter θ cannot be
constant if a quantitative description of the global phase
diagram is required. If we allow θ to depend on µ, reason-
able descriptions of the endemic equilibria (Fig. 1) and of
the global phase diagram (Fig. 3) are obtained. For the

1 the real solution of the cubic equation 27θ3 − 18θ2 + 87θ −
32 = 0.
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SIRS model (1) on the square lattice, a CPA obtained
by fitting θ to βc(0) will improve the results of the UPA
used in [7] to describe the behaviour of the system at low
values of µ.

4 Discussion

We have proposed a simple CPA that was shown to
provide a reasonable approximation to the behaviour of
stochastic models that are relevant in epidemiology — the
agreement against simulation data being far better than
MFA and UPA with a suitable choice of the parameters.
The resulting equations of evolution may be used to ap-
proximate phase diagrams, as well as steady state and
dynamical behaviours of the associated stochastic mod-
els. The CPA takes into account some of the effects of
the local lattice structure and yields a clear alternative to
heavy stochastic simulations.

One of the directions of future work includes the de-
velopment of CPAs, along the lines of the present work,
to account for the local (lattice like) structure of a class of
complex networks, such as the Watts and Strogatz small-
world networks, that have been shown to be relevant in
epidemiological contexts [13].
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